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In 1918 S. N. Bernstein published the surprising result that the sequence of
Lagrange interpolation polynomials to |x| at equally spaced nodes in [&1, 1]
diverges everywhere, except at zero and the end-points. In the present paper, we
prove that the sequence of Lagrange interpolation polynomials corresponding to
|x|: (0<:�1) on equidistant nodes in [&1, 1] diverges everywhere in the interval
except at zero and the end-points. � 2000 Academic Press

1. INTRODUCTION

Consider the infinite triangular matrix X=[xj, n], n=0, 1, 2, ..., 0� j�n,
where

&1�x0, n<x1, n< } } } <xn, n�1, (n=0, 1, 2, ...), (1)

and denote by C[&1, 1] the Banach space of continuous functions on
[&1, 1] equipped with the uniform norm. Then to each f # C[&1, 1]
there corresponds a unique interpolating polynomial Ln( f, X, .) of degree
at most n coinciding with f at the nodes of the (n+1)th row of X. One of
the most important questions in interpolation theory is to characterize
under what conditions on f and X the sequence [Ln( f, X, x)], n=0, 1, 2, ...,
converges to f (x). In 1914 G. Faber [8] discovered the shaking fact that
for any matrix X there is a function f1 # C[&1, 1] such that

lim
n � �

&Ln( f1 , X)& f1&{0. (2)
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Almost twenty years later, in 1931, S. N. Bernstein [3] proved that for
every matrix X there is an f2 # C[&1, 1] and at least one x, &1�x�1,
such that

lim
n � �

|Ln( f2 , X, x)|=�. (3)

The results of Faber and Bernstein were reinforced by Erdo� s and Ve� rtesi
[7], who proved that for any matrix X there is a function f3 # C[&1, 1]
such that

lim
n � �

|Ln( f3 , X, x)|=�, for almost all x # [&1, 1]. (4)

We note that in (4) the word ``almost'' cannot be deleted. Let us remark
that the above mentioned negative results are valid for functions, the
construction of which is a difficult process. In 1918 Bernstein [2] proved
that for the ``most natural'' matrix E=[&1+2 j�n], n # N, j=0, 1, ..., n,
and the function |x|

lim
n � �

|Ln( |x|, E, x)|=�, \x # (&1, 1), x{0. (5)

Bernstein's result suggests that Lagrange interpolation polynomials which
are based on equidistant nodes may have very poor approximating proper-
ties. For a quantitative result in this direction, see [6].

Motivated by Bernstein's result, in the present paper we consider the
behavior of polynomial interpolation for |x|: (0<:�1) at equidistant
nodes. We shall prove that the sequence of polynomial interpolations for
|x|: diverges everywhere in the interval, except at zero and the end-points.

There are at least two reasons for wanting to prove this result. Firstly,
it is a new direction in which the result of Bernstein can be generalized and
therefore may be able to be combined with generalizations in other directions.
Secondly, solving this particular problem contributes to the development of
a body of techniques used in studying interpolation polynomials based on
equidistant nodes. These techniques are quite different from those used
when the interpolation nodes are the zeros of some classical polynomials.

Also it should be pointed out that there are two formulae for expressing
Lagrange interpolation polynomials, namely Lagrange's formula and
Newton's formula. (See, for example, Blum [4], Chapter 8.2). Lagrange's
formula is almost always used for the study of approximating properties in
preference to Newton's formula. However, in [2], Bernstein's proof is
based on Newton's formula. Also, Brutman and Passow [5], used Newton's
representation of the interpolating polynomials in proving the pointwise
divergence of Lagrange interpolation for |x| at a broad family of nodes,
including the Newman nodes. These facts suggest the problem of proving
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divergence properties for functions like |x| or |x|: by using Lagrange's inter-
polation formula. Thus a second aim of this paper is to establish the result
using Lagrange's formula.

2. RESULTS

As indicated above, we shall prove the following result:

Theorem 1. Let 0<:�1 and E=[&1+2 j�n], n # N, n even, j=
0, 1, ..., n. Then

lim
n � �

|Ln( |x| :, E, x)|=�, \x # (&1, 1), x{0.

Theorem 1 suggests that the qualitative behavior of the equidistant inter-
polatory process for |x|: does not depend on :.

3. PREREQUISITES FOR THE PROOF

We begin with the introduction of the Pochhammer notation (.)j , the
generalized hypergeometric function p Fq and some important properties.
For a # R, j=0, 1, 2, ..., we define (a) j by

(a)0=1,

(a) j =a(a+1) } } } (a+ j&1), ( j=1, 2, 3, ...).

The generalized hypergeometric function is introduced by

pFq \:1 , a2 , ..., :p

;1 , ;2 , ..., ;q } z+= :
�

j=0

(:1) j (:2) j } } } (:p) j

(;1) j (;2) j } } } (;q) j

z j

j !
.

By a standard calculation one can simply establish the following results:

Lemma 2. Let m # N, k=1, 2, ..., m, j=0, 1, 2, ... and 0�x�1. Then

(a)
1

j+k+mx
=

1
k+mx

(k+mx) j

(k+1+mx) j
.

(b) (m+k+ j)!=(m+k)! (m+k+1) j .
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(c) (m&k& j)!=
(&1) j (m&k)!

(k&m) j
, ( j�m&k).

(d) (k&m) j=0, ( j=m+1&k, m+2&k, ...).

Lemma 3. We will denote the gamma function by 1(.).

(a) Let s=d+e&a&b&c and s{0. Then

3F2 \a, b, c
d, e } 1+=

1(d ) 1(e) 1(s)
1(a) 1(s+b) 1(s+c) 3F2 \d&a, e&a, s

s+b, s+c } 1+ .

(b) Let c{0, &1, &2, ... and c&a&b>0. Then

2F1 \a, b
c } 1+=

1(c) 1(c&a&b)
1(c&a) 1(c&b)

.

(c) Let m # N, k=1, 2, ..., m. Further denote by

aj (x)=\ 2m
m+ j+

1
j+mx

, ( j=1, 2, ..., m, 0�x�1).

Then

:
m

j=k

(&1) j&1 aj (x)

=(&1)k+1 ak(x) 3F2 \k+mx, k&m, 1
k+1+mx, 1+k+m } 1+ .

(d) For m # N, k=1, 2, ..., m, 0�x�1 we have

3F2 \k+mx, k&m, 1
k+1+mx, 1+k+m } 1+> 1

2 .

(e) For m # N, k=1, 2, ..., m, 0<x�1 we have

3F2 \k+mx, k&m, 1
k+1+mx, 1+k+m } 1+<

k+m
1+2m

k+mx
k+mx&1

.

Proof. (a) See p. 104 of [10].

(b) See, for example, p. 556 of [1].

(c) By using Lemma 2(a�d), the result can be directly established.
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(d) By Lemma 3(a) one gets

3F2 \k+mx, k&m, 1
k+1+mx, 1+k+m } 1+

= :
�

j=0

(1+m&mx) j

(1+k+m) j

(k+mx)
(1+2m+ j)

>
1
2

(k+mx)
(1+k+m) 2F1 \1, 1+m&mx

2+k+m } 1+=
1
2

,

where we have used Lemma 3(b) and the obvious fact that 1+2m+ j<
2(1+k+m+ j).

(e) Again, by Lemma 3(a), we have

3F2 \k+mx, k&m, 1
k+1+mx, 1+k+m } 1+= :

�

j=0

(1+m&mx) j

(1+k+m) j

(k+mx)
(1+2m+ j)

<
k+mx
1+2m 2F1 \1, 1+m&mx

1+k+m } 1+ .

Employing Lemma 3(b) to the last expression establishes the result. K

Next we formulate some properties of a certain function which are
important in the proof of the main result.

Lemma 4. Let 0<:�1 and

g:( y)=
1& y:

1& y
, y # (0, �).

Then we have

(a) g:( y)�0 and g:(1) :=:.

(b) g$:( y)�0 and g$:(1) :=&
:(1&:)

2
.

(c) g":( y)�0 and g":(1) :=
:(1&:)(2&:)

3
.

For the restricted case y # (0, 1], a proof of these facts is given in [11].
This proof can directly be extended to y # (0, �). Note also that Lemma 4
becomes false for :>1. Now we study a certain inequality which plays a
crucial role in the proof of Theorem 1.
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Lemma 5. Let m # N, 0<:�1, 0<x�1. Then one has

:
m

j=1

(&1) j&1 \ 2m
m+ j+

j:&(mx):

j2&(mx)2

�
1

(mx)1&: :
m

j=1

(&1) j&1 \ 2m
m+ j+

1
j+mx

. (6)

Note that for :=1 the inequality becomes sharp for all m # N, 0<x�1,
whereas for :>1 the inequality is generally not true.

Proof. Let g: be defined as in Lemma 4. Then Lemma 5 is equivalent to
showing that

S :
m(x) := :

m

j=1

(&1) j&1 \ 2m
m+ j+

1
j+mx \1& g: \ j

mx++�0 (7)

for m # N, 0<:�1 and 0<x�1. We restrict the discussion to the even
case since the odd case can be established by similar arguments. Thus let
m # N, m even. By the definition of aj (x) (see Lemma 3(c)) we rewrite
S :

m(x) from (7) more concisely as

:
m

j=1
j odd

_aj (x) |
j�(mx)

0
& g$:(z) dz&aj+1(x) |

( j+1)�(mx)

0
& g$:(z) dz& .

Now we change the order of summation and write S :
m(x) in the following

form:

_ :
m

j=1

(&1) j&1 aj (x)& |
1�(mx)

0
& g$:(z) dz&_ :

m

j=2

(&1) j aj (x)& |
2�(mx)

1�(mx)
& g$:(z) dz

+_ :
m

j=3

(&1) j&1 aj (x)] |
3�(mx)

2�(mx)
& g$:(z) dz

&_ :
m

j=4

(&1) j aj (x)& |
4�(mx)

3�(mx)
& g$:(z) dz

+ } } } +_ :
m

j=m&1

(&1) j&1 aj (x)] |
(m&1)�(mx)

(m&2)�(mx)
& g$:(z) dz

&_ :
m

j=m

(&1) j aj (x)& |
m�(mx)

(m&1)�(mx)
& g$:(z) dz.
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Recall from Lemma 4 that &g$: is a non negative and decreasing func-
tion and that each of the sums �m

j=k (&1) j&1 aj (x)�0 for k odd. Thus

S :
m(x)�_2 :

m

j=1

(&1) j&1 aj (x)&a1(x)& |
2�(mx)

1�(mx)
& g$:(z) dz

+_2 :
m

j=3

(&1) j&1 aj (x)&a3(x)& |
4�(mx)

3�(mx)
& g$:(z) dz+ } } }

+_2 :
m

j=m&1

(&1) j&1 a j (x)&am&1(x)& |
m�(mx)

(m&1)�(mx)
& g$:(z) dz.

Finally we make use of Lemma 3(c) for k=1, 3, 5, ..., m&1 combined
with Lemma 3(d) to establish the desired result.

4. PROOF OF THEOREM 1

Let m # N, n=2m, 0<:�1 and 0<x<1. Further denote by

xj =xj, n=&1+
2 j
n

, ( j=0, 1, ..., n),

w(x)=(x&x0) } } } (x&xn),

lk(x)=
w(x)

(x&xk) w$(xk)
, (k=0, 1, ..., n),

f:(x)=|x|:,

Ln( f: , x)=Ln( f: , E, x).

Clearly, since &1, 0, 1 are interpolation nodes for all even n, and since f:

and L2m( f:) are even functions, we can restrict ourselves to the interval
(0, 1). We begin with Lagrange's formula.

L2m( f: , x)= :
2m

j=0

f:(xj) l j (x)= :
2m

j=0

f:(x j)
w(x)

(x&x j) w$(x j)
. (8)

A standard calculation establishes

w$(x2m& j)=w$(xj)=(&1) j (2m)!

m2m \2m
j +

, (9)
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and

w(x)=
(&1)m

m
1

m2m

sin ?mx
?

1(1+m(1+x)) 1(1+m(1&x)). (10)

Combining (8), (9) and (10) we get (after changing the order of summation)

L2m( f: , x)=&
sin ?mx

?
1(1+m(1+x)) 1(1+m(1&x))

(2m)!

_2mx :
m

j=1

(&1) j \ 2m
m+ j+

f: \ j
m+

j2&(mx)2 . (11)

Now we interpolate the function h(x)#1, and we establish

1=&
sin ?mx

?
1(1+m(1+x)) 1(1+m(1&x))

(2m)!

_2mx _ :
m

j=1

(&1) j \ 2m
m+ j+

1
j2&(mx)2&

1
2m2 \2m

m + 1
x2& . (12)

Multiplying (12) by x: and combining with (11), we establish for x # (0, 1)
and all :>0

|L2m( |x|:, x)&|x|:|

= }sin ?mx
? } } 1(1+m(1+x)) 1(1+m(1&x))

(2m)!

_m1&:x } 1
(mx)2&: \2m

m +&2 :
m

j=1

(&1) j&1 \ 2m
m+ j+

j:&(mx):

j2&(mx)2 } .
(13)

At this stage we cannot see the ``divergence'', because the term with the
gamma functions is decreasing to zero as m tends to infinity and moreover,
we have no information on the size of the third term. We combine Lemma
5 and Lemma 3(c, e) to estimate (for 0<:�1)
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:
m

j=1

(&1) j&1 \ 2m
m+ j+

j :&(mx):

j2&(mx)2

�
1

(mx)1&: :
m

j=1

(&1) j&1 \ 2m
m+ j+

1
j+mx

=
1

(mx)1&: \ 2m
m+1+

1
1+mx 3F2\1+mx,

2+mx,
1&m,
2+m

1 } 1+
<

1
(mx)2&: \2m

m + m
1+2m

. (14)

Combining (13) and (14) we establish the following lower bound:

|L2m( |x|:, x)&|x|:|� } sin ?mx
? } } 1(1+m(1+x)) 1(1+m(1&x))

(1(1+m))2 m(1+2m)

=Am(x) } Bm(x). (15)

To complete the proof, it will be sufficient to show that Bm(x) � � as
m � � for all fixed x # (0, 1), while there is an increasing subsequence of
indices m, such that for an appropriate small =>0 we have Am(x)�=>0.

We begin with Bm(x). To this end we employ the asymptotic expansion
of log 1(x) (see, for example, p. 257 of [1]).

log 1(x)=\x&
1
2+ log x&x+

1
2

log 2?+O \1
x+ , as x � �.

We consider

1
m

log Bm(x)=
1
m

log 1(1+m(1+x))+
1
m

log 1(1+m(1&x))

&
2
m

log 1(m+1)+O \log m
m + .

Then as m � � we obtain

1
m

log Bm(x)=
1
2+m(1+x)

m
log(1+m(1+x))

+
1
2+m(1&x)

m
log(1+m(1&x))

&
2m+1

m
log(m+1)+O \log m

m +

277DIVERGENCE OF LAGRANGE INTERPOLATION



=
1
2+m(1+x)

m
log \1+m(1+x)

m+1 +
+

1
2+m(1&x)

m
log \1+m(1&x)

m+1 ++O \log m
m + .

Consequently we get

lim
m � �

1
m

log Bm(x)=(1+x) log(1+x)+(1&x) log(1&x)>0,

\x # (0, 1).

So Bm(x) diverges with exponential order. It remains to show that Am(x)
is bounded away from zero infinitely often. We consider two cases:

Case A (x # Q). We write x in the form a�b with a, b # N and (a, b)=1.
It is easy to give an explicit increasing subsequence [mj] j�0 of indices such
that (for an appropriate small =>0) one has

} sin ?m j
a
b }==>0, (===(x), j=0, 1, ...). (16)

For instance, the subsequence [ jb+1]j�0 will work.

Case B (x # R"Q). Then the sequence [ |sin ?mx|]m�1 is dense in
[0, 1] (this follows from the continuity of sin and the well known fact that
the Kronecker sequence [mx mod 1]m�1 is dense in [0, 1]. Of course, the
Kronecker sequence is uniformly distributed mod 1 (see [9]). Thus we can
always find an increasing subsequence of indices such that, for some small
positive =, |sin ?mjx|�=(x)>0 for all j=0, 1, ... .

This completes the proof of the theorem.

5. OPEN PROBLEMS

We close with stating some (interesting) open problems. (We will refer
to the function f: defined above.)

(a) Motivated by numerical computations, we conjecture that the
divergence of the sequence [Ln( f: , E, x)]n�1 at x # (&1, 1), x{0 takes
place for all :>0 (except : an even integer).
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(b) We mention that we have proved the divergence for the sub-
sequence of polynomials of even degree while the odd degree case is still
open. So we formulate the following problem. Is it true that (for 0<:�1)

lim
n � �

|L2n&1( |x|:, E, x)|=�, \x # (&1, 1), x{0?

(c) Do the Lagrange interpolatory parabolas for |x|: reflect their
divergence (convergence) behavior solely by the function |x|? More
precisely, we ask, whether there is a matrix X and at least one : # (0, 1) (or
: # R+"2N and :{1) such that

lim
n � �

&Ln( f: , X )& f:&{ lim
n � �

&Ln( f1 , X)& f1 &,

or not?
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